>REFER TO UPDATE AT THE END OF THE POST
There are numerous blog posts and discussions about how the GISS global temperature anomaly product GISTEMP differs from the Hadley Centre and NCDC datasets. The repeated reasons presented for this are, GISS uses 1200km radius smoothing to fill in the areas of the globe with sparse surface temperature readings, and the area this has the greatest impact is the Arctic. Typically, a map or comparison of global temperature anomaly maps is included, similar to Figure 1. The top two maps were cropped from Figure 3 in the Real Climate post “2009 temperatures by Jim Hansen”. I added the third. The bottom map was created at the GISS Global Maps webpage. It’s a map of the GISTEMP Global Temperature Anomaly product with 250km radius smoothing for the calendar year 2005, the same year as the top two maps. I did not include a temperature scale because the bottom map was provided to allow a visual comparison of the spatial coverage of the HadCRUT product and the GISTEMP product with 250km radius smoothing. Examine the Arctic and the ocean surrounding Antarctica, the Southern Ocean. Notice a difference? In 2005, the HadCRUT data had better coverage of the Arctic and Southern Oceans than the GISTEMP dataset with 250km radius smoothing. What’s missing in the GISTEMP product? There’s no sea surface temperature data.
http://i45.tinypic.com/htsgeq.jpg
Figure 1
GISS DELETES POLAR SEA SURFACE TEMPERATURE DATA
The general regions where GISS deletes Sea Surface Temperature data are shown in Figure 2. Three areas are highlighted: two cover the Arctic Ocean, and a third surrounds Antarctica. The specific locations are clarified in the following. GISS then uses their 1200km radius smoothing to replace the sea surface data with land data.
http://i48.tinypic.com/33adj86.jpg
Figure 2
Tilo Reber in his recent “Diverging views” post at Watts Up With That? noted that the GISS Current Analysis webpage includes the following statement:
“Areas covered occasionally by sea ice are masked using a time-independent mask.”
This means that vast regions of Sea Surface Temperature (SST) anomaly data in the Arctic Ocean and Southern Ocean are deleted from the GISTEMP record. GISS does not delete all of the Arctic and Southern Ocean SST anomaly data, just the data from the areas where the annual sea ice melt occurs, and those are good portions of them.
I have looked for but have not found an explanation for this exclusion of Sea Surface Temperature data in the papers provided on the GISTEMP references page.
THE AREA OF THE ARCTIC OCEAN WHERE GISS DELETES SST DATA
Figure 3 shows four Arctic (North Pole Stereographic, 65N-90N) maps prepared using the map-making feature of the KNMI Climate Explorer. The maps illustrate temperature anomalies and sea ice cover for the month of September, 2005. The calendar year 2005 was chosen because it was used in the RealClimate post by Jim Hansen, and September is shown because the minimum Arctic sea ice coverage occurs then. The contour levels on the temperature maps were established to reveal the Sea Surface Temperature anomalies. Cell (a) shows the Sea Ice Cover using the Reynolds (OI.v2) Sea Ice Concentration data. The data for the Sea Ice Cover map has been scaled so that zero sea ice is represented by grey. In the other cells, areas with no data are represented by white. Cell (b) illustrates the SST anomalies presented by the Reynolds (OI.v2) Sea Surface Temperature anomaly data. GISS has used the Reynolds (OI.v2) SST data since December 1981. It’s easy to see that SST anomaly data covers the vast majority of Arctic Ocean basin, wherever the drop in sea ice permits. Most of the data in these areas, however, are excluded by GISS in its GISTEMP product. This can be seen in Cell (c), which shows the GISTEMP surface temperature anomalies with 250km radius smoothing. The only SST anomaly data used by GISS exists north of the North Atlantic and north of Scandinavia. The rest of the SST data has been deleted. The colored cells that appear over oceans (for example, north of Siberia and west of northwestern Greenland) in Cell (c) are land surface data extending over the Arctic Ocean by the GISS 250km radius smoothing. And provided as a reference, Cell (d) presents the GISTEMP “combined” land plus sea surface temperature anomalies with 1200km radius smoothing, which is the standard global temperature anomaly product from GISS. Much of the Arctic Ocean in Cell (d) is colored red, indicating temperature anomalies greater than 1 deg C, while Cell (b) show considerably less area with elevated Sea Surface Temperature anomalies.
http://i46.tinypic.com/dpygcj.jpg
Figure 3
Basically, GISS excludes Arctic Ocean SST data from 65N to 90N and, for round numbers, from 40E to 40W. This is a good portion of the Arctic Ocean. Of course, the impact would be seasonal and would depend on the seasonal drop in sea ice extent or cover. The sea ice extent or cover has to decrease annually in order for sea surface temperature to be measured. I’ll use the above-listed coordinates for the examples that follow, but keep in mind that they do not include areas of sea ice in the Northern Hemisphere south of 65N where sea surface temperature data are also deleted by GISS. These additional areas are highlighted in Figure 4. They include the Bering Sea, Hudson Bay, Baffin Bay and the Davis Strait between Greenland and Canada, and the Sea of Okhotsk to the southwest of the Kamchatka Peninsula.
http://i50.tinypic.com/28j9u6u.jpg
Figure 4
Note: GISS uses Hadley Centre HADISST data as its source of Sea Surface Temperature (SST) data from January 1880 to November 1981 and NCDC Reynolds (OI.v2) data from December 1981 to present. To eliminate the need to switch between or merge SST datasets, this post only examines the period from 1982 to present. And to assure the graphics presented in Figures 3 and 6 are not biased by differences in base years of the GISTEMP data and the Reynolds (OI.v2) SST data, the latter of which has only been available since November 1981, I’ve used the period of 1982 to 2009 as base years for all anomaly data.
WHY WOULD DELETING SEA SURFACE TEMPEATURE DATA AND REPLACING IT WITH LAND SURFACE DATA BE IMPORTANT?
Land Surface Temperature variations are much greater than Sea Surface Temperature variations. Refer to Figure 5. Since January 1982, the trend in GISTEMP Arctic Land Surface Temperature Anomalies (65N-90N, 40E-40W) with 250km radius smoothing is approximately 8 times higher than the Sea Surface Temperature anomaly trend for the same area. The Arctic Ocean SST anomaly linear trend is 0.082 deg C/ decade, while the linear trend for the land surface temperature anomalies is 0.68 deg C/decade. And as a reference, the “combined” GISTEMP Arctic temperature anomaly trend for that area is 9 times the SST anomaly trend.
http://i46.tinypic.com/1zpheme.jpg
Figure 5
By deleting the Sea Surface Temperature anomaly data, GISS relies on the dataset with the greater month-to-month variation and the much higher temperature anomaly trend for its depictions of Arctic temperature anomalies. This obviously biases the Arctic “combined” temperature anomalies in this area.
GISS DELETES SEA SURFACE TEMPERATURE DATA IN THE SOUTHERN HEMISPHERE, TOO
Figure 6 shows four maps of Antarctica and the Southern Ocean (South Pole Stereographic, 90S-60S). It is similar to Figure 8. Cell (b) illustrates the SST anomalies presented by the Reynolds (OI.v2) Sea Surface Temperature anomaly data. SST anomaly data covers most of the Southern Ocean, but GISS deletes a substantial portion of it, as shown in Cell (c). The only SST anomaly data exists toward some northern portions of the Southern Ocean. These are areas not “covered occasionally by sea ice”.
http://i50.tinypic.com/aensly.jpg
Figure 6
Figure 7 illustrates the following temperature anomalies for the latitude band from 75S-60S:
-Sea Surface Temperature, and
-Land Surface temperature of the GISTEMP product with 250km radius smoothing, and
-Combined Land and Sea Surface of the GISTEMP product with 1200km radius smoothing, the GISTEMP standard product.
The variability of the Antarctic land surface temperature anomaly data is much greater than the Southern Ocean sea surface temperature data. The linear trend of the sea surface temperature anomalies are negative while the land surface temperature data has a significant positive trend, so deleting the major portions of the Southern Ocean sea surface temperature data as shown in Cell (c) of Figure 6 and replacing it with land surface temperature data raises temperature anomalies for the region during periods of sea ice melt. Note that the combined GISTEMP product has a lower trend than the land only data. Part of this decrease in trend results because the latitude band used in this comparison still includes portions of sea surface temperature data that is not excluded by GISS (because it doesn’t change to sea ice in those areas).
http://i45.tinypic.com/im6q29.jpg
Figure 7
ZONAL MEAN GRAPHS REINFORCE THE REASON FOR THE GISS DIVERGENCE
When you create a map at the GISS Global Maps webpage, two graphics appear. The top one is the map, examples of which are illustrated in Figure 1, and the bottom is a Zonal Mean graph. The Zonal Mean graph presents the average temperature anomalies for latitudes, starting near the South Pole at 89S and ending near the North Pole at 89N. Figure 8 is a sample. It illustrates the changes (rises and falls) in Zonal Mean temperature anomalies from 1982 to 2009 of the GISTEMP combined land and sea surface temperature product with 1200km radius smoothing. The greatest change in the zonal mean temperature anomalies occurs at the North Pole, the Arctic. This is caused by a phenomenon called Polar Amplification.
http://i48.tinypic.com/spd4li.jpg
Figure 8
To produce a graph similar to the GISS plot of the changes in Zonal Mean Temperature Anomalies, I determined the linear trends of the GISTEMP combined product (1200km radius smoothing) in 5 degree latitude increments from 90S-90N, for the years 1982 to 2009, then multiplied the decadal trends by 2.8 decades. I repeated the process for HADCRUT data. Refer to Figure 9. The two datasets are similar between the latitudes of 50S-50N, but then diverge toward the poles. As noted numerous times in this post, GISS deletes sea surface temperature data at higher latitudes (poleward of approximately 50S and 50N), and replaces it with land surface data.
http://i47.tinypic.com/2uzfc6r.jpg
Figure 9
Figure 10 shows the differences between the changes in GISTEMP and HADCRUT Zonal Mean Temperature Anomalies. This better illustrates the divergence at latitudes where GISS deletes Sea Surface Temperature data and replaces it with land surface temperature anomaly data, that latter of which naturally has higher linear trends during this period.
http://i45.tinypic.com/xnsp40.jpg
Figure 10
UPDATE:
There appears to be some confusion in the comments in the WattsUpWithThat thread of my post GISS Deletes Arctic And Southern Ocean Sea Surface Temperature Data about what this post illustrates. I prepared a graph for this post but chose not to use it since it appeared redundant to me. It should clarify what is being presented. It is a comparison graph of GISTEMP Arctic Surface Temperature anomalies for the grid 65N-90N, 40E-40W, which is a major portion of Arctic Ocean as shown above in Figure 4. One dataset is the combined land plus sea surface data; the other is the land-only data. The two datasets are identical. If you subtract one from the other, the difference is 0.0 (zero) for all months. This indicates that there is no Sea Surface Temperature data in the combined product in this grid.
http://i48.tinypic.com/34o3hjq.jpg
Update Figure 1
Does the Sea Surface Temperature data exist for this area? Yes. It is illustrated above as the green curve in Figure 5.
To me, this indicates that GISS deleted the sea surface temperature data for this portion of the Arctic.
SOURCE
Maps and data of sea ice cover and temperature anomalies are available through the KNMI Climate Explorer:
http://climexp.knmi.nl/selectfield_obs.cgi?someone@somewhere